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It follows from (2. l), (3.4) and (3.7) that in that case R" - H" + 0 and the separa- 

tion boundary becomes the straight line y = yz (x) = - H. i.e. that boundary be- 
comes an impermeable base. 

The author thanks N, N. Verigin for the formulation of the problem and V. N. Emikh 
for valuable remarks in the course of solution of the problem. 
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We propose one of the possible versions of the optimum control of the forced 

motions of elastic systems of the type of rods, plates, and shells. We apply the 

procedure developed to elementary problems on the transition of a freely-suppor- 
ted rod or plate from an initial state ‘p, 0 to the rest state in the least possible 
time T in the presence of a constraint on the forcing load. We use the elemen- 

tary results of theory of the I-problem of moments of Krein [l - 31. 

1. We consider a hinge-supported rod undergoing forced motions under the action of 
a load f (2, t). The complete system of equations defining the state of the rod at any 
instant 1 has the form d*x G+$&a$&.& % E (0, 1) t>o 

w (0, t> = w (I, t> = 0, w,, (0; t) = w, (I, t) = 0 
(1.1) 

1L’ (2, 0) = ‘p (Z), w’ (.x., 0) = $ (x), u>’ = dw / dt 
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Here W (s, t) is the vertical displacement, p and E are the density and the modulus 
of elasticity of the material, J and F are the moment of inertia and the area of the 
rod’s cross section. We represent the forcing load (the control) in the following way : 

j(x, t> = pJ jh.(t)sin~ ( O<‘t<T (1.2) 
k-l 

f (2, t) = 0, t > T 

The system {fk (t) 1 is assumed to be linearly independent. 
The solution of problem (1.1) has the form 

sin h,t + D, cos h,t + (1.3) 

By interpreting the fk (t) as control functions, we pose the problem of “damping” the 
rod, i.e. of transferring it from a state cp (cE), I# (2) to the state of rest in a minimal 

time T. We assume that the controls fk (t) belong to the space L” (1 < p < m) 
of functions summable to the pth power on [0, T]. On the fk (t) we impose the con- 

(1.4) 

The transfer conditions for the system from the initial state to the final have the form 

w It& = 0, w’ It+ = 0, 2 E [O, II (1.5) 

By substituting the function (1.3) into (1. 5) we arrive at the system of relations 

T 
1 ’ 

Ck sin h,T t_ Dk cos hJ + E’iJh, 
s 

fk (7) sin A, (T - q) dIJ = 0 (1.6) 

0 
T 

Ck cos h,.T + Dk sin hkT + & \ * L fk(rl) cos hk (T - q) dq= 0 

0 

k=1,2,... 

By eliminating the time T from the integrands in relations (1.6) we arrive at a denu- 
merable system of second-order moment problems 

ak = ~fk(‘l)coshk~d% a, = - ckpFhk 

11, = D,pFh, IIfkII<h, jh. E LP, 

(1.7) 
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Each of the indicated collection of moment problems (1.7) has its own minimal time 
Tk. The largest of (Tk} (if it. exists) yields the least possible time T in which the 
transition of the rod from the state (p, %j~ to the state of rest in the presence of con- 

straints (1.3) is realized. 

2, According to [l-3], each of the moment problems (1.7) reduces to the following 

equivalent problem : find 

L 

J I&.” cos A& + Tg sin ?v,t IQ cet > A-Qt 
II 

-$- -I$ = 1 

under the condition 

The conditional extremum problem (2,l) is solved elementarily. By assuming for the 

sake of shortening the writing that a k = 0 (e, g, the initial and final velocities of the 

rod equal zero) and that fk E L”; we obtain an expression foor the quantities EkO and 

Substiruting (2.2) into the integrand in (2,1), integrating with Q = 2 and equating 

the result obtained to the quantity AT2, we arrive at a t~a~s~~de~tal ~qu~~~~~ in the 

least possible time T = T, in each of problems (2,1) 

1 -- 

a&z 

3ck = - 
A” ’ 

%k = A,$?, 

(2.3) 

Theorem 2.1. For any wlu~ m;rr; <X < (m +1) n, (m --r 0,1, . ..} there 
exists a unique solution 6 of the equation 

contained in the interval rptn, < 6 < (m -j- 2) ;n. When x = R.N. the solution 

6 = mn. As ?G increases, the function S (x\ increases monot~ni~lly on (mn, mn -/- 

&ii), lim 6 / x = 1 as cx + cm. 
Proof. We introduce the function 

R (6) = s - hr (fy, r (6) = 13~ - sin2 6 x 
26 -/-sin 28 

-- 

r’ (6)‘> 0, 
2 

(2*5) 

3L = (max r’ (a)}-I, 

Obviously, the equation 6 = I? (6) is equivalent to (2.4). By virtue of (2.5) 
1 R’ (6) f < I on (mm, mx $- n>, i.e. R - contraction mapping. By the con- 

traction mapping principle [4] this equation has a unique solution mfi < 4 < (m + 
1) n. The monotonic growth of S (x) on each of the intervals (mn, mz + 7t) fol- 

lows from the fact that the derivative d6 I dx is positive on it, 
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From the proof it follows, in particular, that the solution of Eq. (2.4) can be obtained 
by the method of successive approximations by a recurrence process : 

6 n+l-=R(6,), n=O,l,...; 6=lim6, (2.6) n-+m 

The roots of Eq. (2.4) as a function of the values of parameter x are presented below : 

x z:- 0.005, 0.010, 0.015, 0 .020 , Il.025, 0.5, 
6 = 0.308, 0.385, 0.441) 0.484, 0.522, 9.308, 
x =I, 2, IO, 15, 20 ) 30, 
8=1.603, 2.u17, 10.48, 14.625, 30.23, 29.94 

Assume that cp (x) E C’” (n > 1)) while d”cp / dx” is of bounded variation on 
IO, Il. Under these conditions the following theorem is valid. 

Theorem 2.2. The problem of the optimal (in the sense indicated above) con- 
trol of the rod in L2 is solvable. The least possible time T in which the rod can be 

transferred from the initial state to the final (in the presence of constraints (1.4)) is 

determined by the formula 

T=sup TIF+, 
1 

h=1.&..J-2-=T60 (2.7) 
k 

Proof. By virtue of the conditions imposed oh qz (x), the Fourier coefficients D k 

decrease with the increase of 1~ no slower than k- 3. On the basis of (1.3) (1.7) and 

(2.3) we conclude that the sequence {xk} is bounded. By virtue of Theorem 2.1 the 

sequence {rk = r (3tk)} also is bounded. Hence follows the existence of a finite least 

upper bound of the sequence (rk / hk}, and it is realized for some k = k,p Thus, 
(2.7) makes sense and defines the least possible time to which there correspond simul- 

taneously the solutions of the whole collection of moment problems (1.7). 
Further, series (1.2), setting the controlling load f (z, t), converges. In fact, by virtue 

of (2.2) the desired control functions fk (/) have in L” the following form [3] : 

fr (t) = k G (\A %cL)! G (F&., qk) = Et, cos ?b,t -+ qk sin h,t (2.8) 

Allowing for (1.3) and (1.7) from (2.7) we immediately find 

h?oh. {Ak (r’) Sill ?b,t - 11, (T-) cos h,t) (2.9) 

A,(z)= 1 +qy k -= 1,2, 
k 

The convergence in the norm in L” of series (1.2) for any fixed 0 .< t < T ko follows 
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from (2.9). However, if n > 2, series (1.2) converges absolutely and uniformly on 

IO, 11 for any 0 < t < Tko. 

9. Let us consider some examples. Let the initial velocity pl, (x) = 0, while the ini- 

tial displacement coincides with the flexure of the rod under the action of a uniform 

transverse load s = const, i.e. 

‘p (r) = 2 D, sin F, Ijk= 2s (1 -ccos kn) 5 

b-J1 (3.1) 
h’=i 

let us determine the controlling load f ( 5, t) and the least possible time T needed to 

dampen the rod. The control functions fk (t) are sought in L”. 

In the given case, obviously, fzk (t) = 9, k = i, 2, . . . . By virtue of (1.7) (1.3) 

(2.3). (2.7) and (2.9), the quantities xk and Pk have the form 

32sV 
h^ J- 

pB 
X=nskJnz - RJ (3.2) 

(k‘W’)2 - (sinkY’)z 
3, = 2/i%” + sin 2kQ” 

1 
h,b,2 ’ k=l, 3, . . . 

By virtue of Theorems 2.2 and 2.1 the solution of the optimal damping problem of the 
rod exists and the least possible control time is 

T = T, = -cl i X,, 9 = T 1 (3.3) 

We find the control functions from (2.9) and (3.1) with k, = i 

fk (t) =-; 2%. nZok;r { .4, (t”) sin L,t - B, (Z”) co9 Q}, 0 < t < Ti (3.4) 

We find the controlling load f (I, 1) by 

functions fk (t) from (3.4). 

0.8 

formula (1.2) into which we must substitute the 

Fig. 1 Fig. 2 

In Figs. 1-3 we have shown the curves 10% = n5 EJw I 4d4, w,’ = na”T/ E-E w’ / 4sP 

and f (2, t) / s for various values of the dimensionless time T = Al t (0 < T < I?) for 
TO = 10. 

As a second example we consider the rod damping problem for $ (z) = 0 and an ini- 
tial displacement coinciding with the flexure of the rod under the action of a point force 
P applied at the middle. In this case we have 



Consequently, the least possible control time agrees with T, and r” = ~1. The control 

functions have the form 

fk (‘) = 
4p ;;,“s” / 2 (A, sin h,t - B, cos h,t), O,(t<T 

The quantiries A, and B, are given in (3.4). The controlling load f (2, t) is deter- 
mined by series (1.2). 

Let us now consider the case, most severe 

from the viewpoint of optimal damping of 

the rod, when the initial displacement coincides with the rod‘s flexure under the action 

of a bending moment M concentrated at a point z = 4. Here 

knxo 
co3 1’ c,=o 

When x0 = 0.5 I, for example, the minimal damping time T= T, (z” = Q). The con- 
trol functions are : 

f, (t) - $$- (A& sin h,t - B, cos h,t) cos F, 11 fl, ii d A 

Here Ak and Bk have been defined in (3.4). 

4. Let us connect the #nstra~nt A with the static load necessary to create the initial 

flexure cp (2). We present our arguments with reference to the first example in Sect. 3. 
Taking into account that / s II = s fl in L2 10, Tz] from (3,2), (3.3) and (1.3) we 
find 

P- &=$1/Z 

The curve p (e) is shown in Fig. 4. The calculation can be made in the following order. 

The quantity fl and the rod parameters I, p, P and J are prescribed. We determine 1;9 
from the curve fi(r“) in Fig. 4. We find the damping time T by formula (3.3), while 
the ratio of the controlling load f ( x, t) to the intensity s of the static load, by formula 

(1.2) with due regard to (3.4). The quantity s is fixed since the initial flexure of the 

rod is specified, Analogous arguments are carried out in the other cases. 

5. let us consider the optimal damping problem for a ~ctang~ar plate hinge-sup- 
ported along the contour. The complete system of equations defining the forced motions 
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of the plate has the form 
ph SW 

(5.1) 

o<x<a, O<y<h t>o 
w (2, Y, t) Ic = 0, wn,(x, Y, t)IC=O’ t>o 
w (x* Y* t) It+ = cp (5 Y), w’(xv Y, t) I(+ = $J (XI Y) 

D = Ehs/12 (1 - ~2) 

Here w (x, y, 8) is the plate’s vertical displacement; p, E, p are the density, the mo- 

dulus of elasticity and the Poisson’s ratio, respectively, h is the plate’s thickness ; c is 

the boundary of the rectangular region B (0 < x f a, 0 < I/ < b). By the sense of the 
problem the functions q and $ are continuous, possess continuous first and bounded se- 

cond derivatives in all their arguments in B. The controlling load is sought in the form 

f (5, Y, t) = $J f,,(t) sin 
mnx . -at* rtjzy 

a b (5.2) 
m,n=r 

O<t<T 

f (5, Y, t) = 0, t> T 

Then the solution of problem (5. l), corresponding to load (5.2) is represented in the 
usual form 

w (x, Y, 1) = i C,, sin hmnt f D,, cos hmnt + (5.3) 
m,n=r 

a b 

D,, = -& ’ 
ca 
GO 

cp (x, y) sin Fsin Fdxdy 

ab 

c 
4 

cc 

mnx -- nnY 
mn - abh,, 

Ii;, 

$ (2, y) sin a sin bdxdy 

Ln=[($y2+(+y2] J$ 
Starting from solution (5.3) we pose the problem of transferring the plate from a state 

cp (x, y), (I (x, y) to the state of rest in the least possible time T. The conditions forthe 
total damping of the plate have the form 

w It=T = 0, w’ Il=T = 0, O<x<a, O<y,(b (5.4) 

Substituting function (5.3) with t = T, into (5.4), we obtain (after intermediate manipu- 
lations) a denumerable collection of second-order moment problems 

T 

n 
mn = s f,, (7) cos J”mn 9 47 II f,, II < A 

0 
T 

b Inn = s f m7L (vl) sin hmn 11 drl, f,, E LP 
0 

l<P<~ 
a mn= -phh C mn mnt bm, = %,d4,,,, m, n=l, 2, . . . 
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Thus, we arrive at the ~~~~ern studied above, 

it is obvious that the procedure described can be applied also to the optimal control 

problems for the forced motions of elastic shells. 
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Shell theory equations are constructed by the method in [I] to the accuracy of 
quantities of the order of &, 2’rE, where k = 0 for 0 6 t < lfe and k I- 2-4 

for xjz < t < 1 (h, is the relative semithickness of the shell and t is the index 

of the state of stress variation). Without being within the framework of the Love- 

type theory, the equations obtained are compared with the Reissner-Naghdi equa- 
tion* [Z, 3f in which the transverse shear is taken into account, and it is shown 

that from the asymptotic viewpoint these latter are ~~~~s~sten~ It is also shown 
that if the shell resists shear weakly, then from the asymptotic viewpoint the 
Reissner-Naghdi theory is completely well founded. 

The three-dimensional equations of elasticity theory are reduced to two-dimen- 

sional equations in El] by using an ~~rnptot~~ method, i.e. all members of the 
same order relative to the small parameter A, are taken into account at each 

stage of the calcufaeions, It has been shown that without going outside the frame- 

work of the ordinary concepts of the Love-type theory of shells (in particular, 
without taking account of transverse shear), the shell theory equations can be 
constructed to the accuracy of quantities of the order of hFzt, but it is impos- 
sible to exceed this limit without a qualitative ~ornp~~~t~on in the theory, 

1 l To construct a shelf theory to the accuracy of qua~t~~~s of the order of hi+k 
(k = 0 for t < ‘/a and k = 2---4t for I/$ < t < 1) let us use the asymptotic re- 

presentation of the quantities in three-dimensional elasticity theory used in [I]. 
The terminology and notation used henceforth correspond to that used in [ 1, 43. 
Let ~7s take the equations of thee-dimensional elasticity theory referred to a tri-artho- 


